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A Transformation Method of Generating Exact 
Analytic Solutions of the Schr6dinger Equation 
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A transformation method is presented which consists of a coordinate 
transformation and a functional transformation that allow generation of normalized 
exact analytic bound-state solutions of the Schrodinger equation, starting from 
an analytically solved quantum problem. The coordinate transformation is the 
basic transformation, which is supplemented by the functional transformation so 
that one can choose the dimension of the space of the transformed system. By 
repeated application of the method, it is possible to generate a number of solved 
quantum problems in the case that the original quantum system has a multiterm 
potential. It is shown that the eigenfunction of the transformed system can be 
easily normalized in most cases. 

1. I N T R O D U C T I O N  

Besides the exact analytic solutions (EAS) o f  the Schr'odinger equation, 
which are few and far apart, it is the approximate perturbation schemes and 
variational procedures which give quantum mechanics its enormous success 
as a physical theory. For implementing approximate schemes economical ly 
and profitably while dealing with practical quantum mechanical  problems, 
EAS of  idealized quantum systems (QS) are desirable. Nonperturbative solu- 
tions o f  different potentials may lead to new physical ideas and/or calculational 
techniques in quantum physics. In fact there has been a sustained effort in 
this direction (Manning, 1935; Biswas et al., 1971; Khare, 1981; Roy and 
Roychoudhury,  1987; Chhajlany and Malnev, 1990; Bose, 1994), with a recent 
increase in activity mainly inspired by supersymmetric quantum mechanics 
(Cooper et al., 1995). This provides the raison d 'etre  for the search for other 
solvable quantum systems. The intention o f  this paper is to elucidate a 
simple mapping procedure for generating normalized bound-state EAS of  the 
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SchrOdinger equation for new potentials, albeit generated from an already 
known normalized EAS. 

Johnson (1980) and Dutra (1988, 1993) gave some mapping procedures, 
but the aim and content of their procedures are different from what is presented 
in this paper. In our scheme we start from a known analytically solved QS 
and transform it to generate a new solved QS. When the original QS has a 
multiterm potential, then in general it is possible to generate a number of 
different solved QS, depending on the number of ways of grouping the 
various terms of the potential. Besides the normal exactly solvable QS, other 
analytically solvable QS include the quasi-exactly solvable QS (Flessas, 1979; 
Flessas and Das, 1980; Dutra, 1988; Shiffman, 1989; Dutra and Filho, 1991), 
conditionally exactly solvable QS (Dutra 1993; Dutta et al., 1995a), and 
conditionally quasi-exactly solvable QS (Dutta et al., 1995b). In our procedure 
the new QS preserves the nature of the original QS from which it is generated. 

The transformation procedure is based on a coordinate transformation 
(CT), but is found to be inadequate, as it leads to problems regarding the 
dimensionality of the (Euclidean) space into which the transformed system 
gets transported. This is illustrated by applying the CT to the often discussed 
mapping of a Coulomb to a harmonic oscillator system. This problem can 
be overcome by supplementing the CT by a functional transformation (FT) 
that allows a consistent way to choose the dimension of the transformed 
system. The generated bound-state QS are deemed solved only when the 
energy eigenstates are normalizable. In this transformation method the nor- 
malizibility of the eigenfunctions of the generated QS can easily be verified 
in most cases. 

The organization of the paper is as follows. In Section 2, we give the 
transformation procedure to generate the EAS for new potentials, considering 
the coordinate transformation. Section 3 applies the method to the Coulomb 
and harmonic oscillator problems, including the normalizibility of the gener- 
ated EAS. An extended transformation which combines the coordinate trans- 
formation and functional transformation is presented in Section 4 along with 
the reasons for its necessity. The important question of the normalizibility 
of the generated EAS is discussed in Section 5, and conclusions are given 
in Section 6. 

2. COORDINATE TRANSFORMATION 

Consider a solved quantum bound-state problem in the nonrelativistic 
regime, henceforth called the A system, in DA-dimensional Euclidean space. 
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The radial Schrrdinger equation (Louck, 1960) is (h = 1 = 2m) 

DA-- 1 ( lA(lA +DA--2))  
t~,(r) + ~ 0~,(r) + E g - Vg(r) -- t~g(r) = 0 

r r :  

(2.1) 

where the normalized eigenfunction +a(r) and the energy eigenvalues E. a are 
presumed known for the given central potential Va(r). The prime denotes 
differentiation with respect to the argument. 

Consider the coordinate transformation (CT) 

r ~ gB(r) 

with the transformation function gB(r) a differentiable function of at least 
class C 2. 

To implement the program it is necessary to make the following ans~itze, 
which constitute an integral part of the transformation method: 

g~ZVa(gB) = - E ~  (2.2) 

g'2~'A = _VB(r) (2.3) B ~ n  

and 

g~2(/a + DA/2 - 1) 2 (la + DB/2 -- 1) 2 
g2 r ~ 

(2.4) 

The generalization of the Langer form (Langer, 1937) is taken for the 'centrifu- 
gal barrier' term. Then equation (2.1) takes the form 

X'~(r) + x~(r) ~ In g;  

_,2{~a (IA + DAI2 - 1) 2 (DA - 2)2~ 
•  = 0 

(2.5) 

with xB(r) = ~A(ga(r)). With the ans~itze (2.2)-(2.4), equation (2.5) takes 
the form 

d gBOa-I / 
•215  d r ln  g~ J 

+(E~v-V~(r) - (IB+DB/2--r 2 1)2 + gBZ(DA--2)2)g2 xs (r )  = 0 

(2.6) 
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which we call the transformed system (B system). The B system would in 
general be in a Euclidean space of dimension 2 ~qa other than DA. For a power- 
law potential the specific value of the dimension DB is dependent on the 
functional form of gB(r), which is essentially dependent on the form of VA(r) 
as indicated by the first ansatz (2.2). The second ansatz (2.3) specifies the 
new potential VB(r) and at the same time yields the energy eigenvalues E~, 
as shown below. The last ansatz (2.4) gives the required relationship between 
the 'angular momentum' quantum numbers l A and la which allows us to 
replace all/A-dependent quantities of the A system with the corresponding 
/B-dependent quantities of the B system. In this method there is no room for 
any arbitrary choice for the quantities gB, IB, DB, VB(r), and EN B while changing 
over from the A to the B ~ystem. 

For a power-law potential VA(r)= aA rbA, gB(r)= const ' r  2/tbA+2), as 
given by equation (2.2). This gives the coefficient of x~(r) in equation (2.6) 
t o b e  

2(DA +bA)  1) 1 

bA + 2 r 

It is therefore natural to identify 2(DA + bA)/(bA + 2) = XlB as the dimension 
of the space in which this B-system Schr'odinger equation is established. 
Further note that this identification of DB allows the quantity 

(Is + DB/2 -- 1) 2 g~2 (DA -- 2) 2 

r 2 g~ 4 

to be reduced to lB(lB + D~ - 2)/r 2, as consistency requires. As a result, 
equation (2.6) becomes 

x ~ ( r ) +  ~IB--1 x~(r)+ ( E B _  VB(r) -- I B ( I B + ' q B - - 2 ) )  
r r2 xs(r) = 0 

(2.7) 

which is the B system Schr6dinger equation in rls-dimensional space with 
the new potential Vs(r) [given by ansatz (2.3)] and whose analytic solution is 

XB(r) = t~A(gB(r)) (2.8) 

It should be noted that the dimension of the Euclidean space ~IB in which 
the SchrOdinger equation (2.7) is established by a coordinate transformation 

2The dimension of the Euclidean space in which the Schr'odinger equation is established is 
denoted by D, except when it is a coordinate-transformed SchrOdinger equation. The dimension 
of the coordinate-transformed Schfodinger equation is denoted by T I for reasons that will be 
apparent in the text. 
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is not arbitrary, rib is the coefficient of x~(r)/r in equation (2.6) increased 
by unity, i.e., 

d l n ( g ~ - l ( r ) l  
rib = 1 + r ~ r  \ g ~ r )  J (2.9) 

"qB = riB(DA, bA) for a power-law potential with bA as the exponent of r. 
The above expression shows that, given two of the characteristic quantities 
of the A system Schr6dinger equation DA and bA, the dimension "rib of the 
transformed B system is uniquely specified and there is no way it can be 
chosen a priori in a consistent manner. 

For gB(r) a power law, g~(r) is also a power-law function of r; hence, 
by equation (2.3) we get a power law Va(r). The energy eigenvalues E~ of 
the B system are simply obtained by putting the coefficient of the r-indepen- 
dent part of Va(r), which would be a function F(E~), equal to the characteristic 
constant C~ of the B system (Ahmed, 1996), i.e., 

VB(r) = F(EBN)E~r p = C~r ~ (2.10) 

This yields 

E~ = F-~(~ /E~)  (2.11) 

E/~ is thus specified in terms of the known E, a of the A system. However, 
the quantum numbers N and n are different, as IA and Ia are in general 
different. For the potential VA(r) = aA roA, 21A = (bA + 2)lB. The form of 
gB(r) decides the form of E~ in terms of E, a, besides deciding the dimension, 
which we call the natural dimension riB of the Euclidean space, where the 
transformed system (B system) would be found when the mapping of the A 
to the B system involves only the coordinate transformation. 

3. COORDINATE TRANSFORMATION OF COULOMB AND 
HARMONIC OSCILLATOR SYSTEMS 

That a Coulomb system can be mapped into a harmonic oscillator system 
is not new. However, to our knowledge this has not been completely analyzed. 
In this section we apply the above procedure to a 3-dimensional Coulomb 
system and transform it to a 4-dimensional harmonic oscillator (HO) system 
and also indicate why a 3-dimensional HO cannot be similarly transformed 
into a Coulomb system by a coordinate transformation. 

The 3-dimensional Coulomb system is characterized by (in atomic units: 
h = 1, e 2 = 2, m = 1/2) the potential VA(r) = Vcoul = --2/r, energy eigenvalue 
E A = - 1 / n  2, nA = nr + lA + 1, and radial eigenstate 

.lA~--r/nAl21A+l {0 r (3.1) 
J 
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A simple integration of equation (2.3) with VA(g) = --2/g yields 

~/=(r) : C +- 0.5 t ~ -  ) r (3.2) 

Taking the integration constant C = 0, which is equivalent to g(0) = 0, and 
the positive sign in equation (3.2) yields 

g(r) = (Eau/8)r 2 (3.3) 

leading by equation (2.4), to 

Va(r) = -(EBu2/16)Eg, re = (EBu2/16n~)r 2 (3.4) 

VB(r) is identified as the HO potential. Equating the coefficient of r e to the 
characteristic constant �88 2 of the HO yields 

0) 2 
Va(r) = ~ r z (3.5) 

and 

EBu = 0)(2hA) (3.6) 

Expressions (2.9) and (3.3) and the fact that the original Coulomb system is 
in 3-dimensional space (i.e., DA = 3) show that "rib = 4 for the HO system. 
Equation (2.4) then predicts the relation 2/A = la and hence 2na = 2n~ + 
IB + 2 = N + 2. Therefore the energy eigenvalue ESu = 0)(N + 2), as expected 
for the 4-dimensional HO. The radial eigenfunction • given by equation 
(2.3) becomes 

rtBe - (oU4)rzLJB +1 {1 ) (3.7) xa(r) = l/2ts_tB)~ 2 0)r z 

which satisfies the 4-dimensional radial SchrOdinger equation 

x~(r) + 3 x~(r) + [0)(N + 2) - 0) r 2 IB( /B+2)]  r ~ r2 • = 0 (3.8) 

A further coordinate transformation on this 4-dimensional HO would 
be an inverse transform and it would revert back to the 3-dimensional Cou- 
lomb case. It is interesting to note, however, that when we start from a 3- 
dimensional HO system, then the above coordinate transformation procedure 
yields "qB = 3/2, showing that the transformed Coulomb system would not 
be in any integral-dimensional space and hence could not be an ordinary 
physical Coulomb system. This kind of dimensional mismatch is a deficiency 
of the coordinate transformation method. 
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Normalizability of the wave function is an important aspect of a solved 
bound-state quantum problem. In the present case the B system wave function 
is normalizable if the integral 

i~ t~(g)~g(g)r 3 dr 

is finite and positive. Since gs(r) = a r  2, we can write r 3 dr as (2/ct) 
{[-VA(g)]/E~} g2dg, so that the above integral becomes 

( g~) 2 [ -  Va(r)] 2 
d~(r) - -  t ~ A ( r ) r  2 dr ---> - -  (-VA(r)) (3.9) 

v~o) ot ESN ctE~ 

which is finite and positive, as E~ is never zero, implying normalizibility of 
the 4-dimensional harmonic oscillator wave function Xs(r) = ~A(ar 2) 
obtained from the 3-dimensional Coulomb system. A general discussion on 
the normalizibility of the wave function of the transformed system is given 
in Section 5. 

4. E X T E N D E D  T R A N S F O R M A T I O N  

The above simple examples amply demonstrate that it is quite easy to 
map one type of quantum system to another following the above coordinate 
transformation method. However, in two important aspects it is deficient. (i) 
One cannot convert a given quantum system into a desired quantum system, 
(ii) it is not possible, for a power-law potential, to control the dimension of 
the space in which the transformed quantum system will be found, as the 
dimension ~qB is uniquely specified. Moreover, the transformed systems cannot 
be cast in the standard SchrOdinger equation form when the potential is non- 
power law. 

The second deficiency can be overcome by performing an extended 
transformation (ET) instead of the simple coordinate transformation on the 
A system that we considered above. The extended transformation also solves 
the problem encountered in applying the coordinate transformation to the 
Schr6dinger equation with a non-power-law potential. The extended transfor- 
mation consists of  a coordinate transformation followed by a functional 
transformation, as follows: 

r ---> gB(r) (4.1) 

and 

• = f-l(r)OA(gB(r)) (4.2) 

For the extended transformation the transformation function gB(r) must be a 
differentiable function of at least class C 3. 
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Application of the extended transformation to equation (2.1) of the A 
system gives 

, d lnf2gOA-I/ + d d in J sB__ 
x~(r) + xB(r) -~r g~ ] drln drr g~ J 

~ , 2 / ~ ' A  IA(IA+DA--2))] 
+ ~B ~ , ,  - VA(g . )  -- gTa xa( r )  = 0 (4.3) 

To have the transformed system in a chosen DB-dimensional Euclidean space, 
we set 

d lnf2g~A-I _DB--  1 
dr g~ r 

which fixes fir) as 

f(r) = g~ll2gB (OA-I)/2r(DA- 1)/2 

and changes equation (4.3) to 

x ~ ( r )  + - -  D n -  1x~(r)+ [2 { g s ' r } r  

- -  - -  " J r -  - -  - -  

2 2 \ga/ 2 2 

.,2[~,, (IA +DA/2 - -  1)2 (DA-- 1)2)] 
+ ~;B ~,'~. -- VA(gB) -- g2 + -4g-Sa X a(r) = 0  

(4.4) 

where 

{gB, r } -  g'~'(r) 3 / "  \[g,(r)/2 
g~ (----~ 2 \g--~r) / 

and is the Schwartzian derivative symbol. Invoking the ansatze (2.2)-(2.4) 
of Section 2 reduces equation (4.4) to the standard Schr6dinger equation 
form 
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D B - 1 
x~(r) + - -  x~(r) 

r 

+ 2 2 \ g B ]  

+ ( l B + D B / 2 - - 1 ) 2 _ ( g ~ 1 2 ( D a 4 2 ) 2 ] }  
r 2 \gaB/ XB(r) = 0 (4.5) 

It is interesting to note that the quantities inside the square brackets give 
the correct form of the 'centrifugal barrier' term in a DB-dimensional space 
la(la + DB - 2)/r z (Louck, 1960) whenever VA(r) is of power-law type. Thus 
the transformed B system SchrOdinger equation is established in a Euclidean 
space of the chosen dimension DB, and is given by 

DB--  1 [ IB(IB + DB- -  2)] 
x~(r) + - -  x~(r) + E B -  VB(r)-- r2 Xa(r) = 0  

r 

(4.6) 

whose eigenfunction is given by equation (4.2): 

XB( r) = g~- t/Z g~O A- l )/2r--(Oa-- I )/2O A (gB( r) ) (4.7) 

and is known as ~A(r) and gB(r) are known. 
The energy eigenvalues E B are given by equation (2.9). The relation 

between the 'angular momentum' quantum numbers IA and IB obtained from 
ansatz (2.4) is 

4IA = (bA + 2)(2lB + DB -- 2) -- 2(DA -- 2) (4.8) 

When we apply the extended transformation to transform a 3-dimen- 
sional Coulomb to a HO system, then, unlike the coordinate transformation, 
we can now choose the dimension of the HO system. Let the HO system be 
required in 3-dimensional space also. Expressions (3.3), (3.5), and (3.6) for 
gB(r), VB(r), and EBN, respectively, hold here, too, except that the relation 
between the 'angular momentum' quantum numbers IA and lB is given by 
equation (4.8), leading to lA = ls/2 -- 1/4 and so 2hA = 2nr + (IB -- 1/2) 
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+ 2 = N + 3/2. The energy eigenvalue is now EBu = to(N + 3/2). In addition, 
instead of • = OA(gB(r)), we now have [equation (4.7)] 

xB(r) = r-lgs(r)'-l/ZgB(r)OA(ga(r)) 

= rtae-('~ 1 tor 2) (4.9) 

which is the radial eigenfunction of the 3-dimensional HO. In an exactly 
similar fashion we can consistently map a 3-dimensional HO system to a 
Coulomb system of any desired dimension. 

5. N O R M A L I Z A B I L I T Y  OF T H E  T R A N S F O R M E D  WAVE 
F UNC TION 

The normalizability of the B system wave function obtained by the 
extended transformation can be proved under fairly general conditions, as it 
seems to preserve the normalizability property to quite a good extent. 

Expressions (4.7) and (2.2) give the normalization integral for • as 

I [ VA(r) ] 1 ga(~ ---E-~s dr = 1 (5.1) INal z O~(r) OA(r)r ~ 
dgB(0) 

Hence all those • are normalizable for which (i) Eau 4 : 0  and (ii) the 
integral 

l(gB(w), gB(0)) = ~ ( r )  - ~A(r)rOA - l  dr (5.2) 
agB(O) 

is positive definite. 
It is pertinent to note at this stage that, since OA(r) is the normalized 

wave funct ion of  a genuine quantum mechanical  system, the quanti ty 
(-E~,)I(~, 0) = (VA(r)) necessarily exists. Its existence also implies that 
(-EB)I(b, a) also exists whenever a > 0 and b > a. The generated eigenfunc- 
tions XB(r) are normalizable, therefore, whenever the asymptotic and the local 
behavior of gB(r) ensure that gB(~) > 0, gB(r) >- O, and gB(~) > gB(r). 

6. DISCUSSION AND CONCLUSION 

This paper has dealt with the generation of exact analytic bound-state 
solution of the Schr6dinger equation, talking as 'seed' an already analytically 
solved quantum problem. The method rests on a coordinate transformation 
followed by a functional transformation. The former is the basic transforma- 
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tion, and has been used in earlier treatments mapping one system into another. 
Earlier studies of mapping by various authors dealt with a 1-dimensional 
system and/or completely sidetracked the important question of the dimen- 
sionality of the space of the transformed system. Within the context of 
the coordinate transformation and power-law potential we have studied the 
dimensionality aspect of the transformed quantum system and found that 
except when the A system is taken in 2-dimensional space, there is always 
a change in the dimensionality of the B system. This uniquely determined 
number aqB, representing the dimensionality of the B system, is given by 
equation (2.9), which for the specific form VA(r) = aA rbA becomes 

2(riA -- 2) 
~B - 2 - ( 6 . 1 )  

bA + 2 

The dimensionality rib (DA, bA) is a characteristic quantity of the B system. 
The uniqueness of ria causes trouble, as, depending on rig and bA, it may 
even become fractional. For example, if the A system is a one-dimensional 
HO system (riA = l, b g = 2) or a three-dimensional HO system (rig = 3, 
b g = 2 ) ,  the B system obtained by coordinate transformation would be a 
Coulomb system in 3/2 or 5/2 dimensional Euclidean space, respectively. We 
have to start with a 4-dimensional HO as the A system to get a 3-dimensional 
Coulomb system by coordinate transformation. 

When the exponent of  the power-law potentials of the A system and its 
coordinate transformed B system are bg and bB, respectively, then correspond- 
ing to relation (6.1) we also have riA -- 2 = 2(rib -- 2)/(bB + 2) obtained 
by interchanging the roles of the A and B systems. These two relations at 
once give the duality relation 

( b  A -I- 2)(bB + 2) = 4 (6.2) 

which can also be derived from the ansatz (2.4). It is worth noting that the 
above relation for ('qB - 2), which is valid under the coordinate transforma- 
tion, reduces the relation (4.8) to 

IA(bA q'- 2) -1/2 = Ia(ba + 2) -I/2 (6.3) 

As mentioned earlier, the difficulty of not being able to choose the 
dimension of the transformed B system a priori led us to supplement the 
coordinate transformation by a functional transformation and consider the 
composite transformation--the extended transformation. The F-transforma- 
tion component of the E-transformation may be considered as a device for 
dimensional reduction or dimensional extension of the transformed B system 
with reference to the dimension rla. 
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Let ct, which we can choose, be the deviation of the dimensionality of 
the B-system under the E-transformation compared to rIB, i.e., DB = "qB + 
or. Then relation (6.3) becomes 

2IA(bA + 2) -1/2 = (2IB + et)(ba + 2) -l/z (6.4) 

The application of this transformation method to generate different com- 
pletely solved quantum mechanical problems starting from an analytically 
solved problem with central power-law potential is fairly straightforward. It 
is not so when the original quantum system is governed by a potential other 
than a central power law. In such situations, the n-dependent part and the r- 
dependent part of the transformation function gB(r) get intertwined without 
yielding to factorization. These complexities have been addressed by applying 
the method to the Hulthen problem, which has a typical non-power-law 
potential, and will be reported elsewhere. 

It may be mentioned that the transformation procedure may be applied 
repeatedly in cases involving a central multiterm power-law potential by 
selecting working potentials differently to generate a variety of solved quan- 
tum problems, the number, in principle, being equal to the number of ways 
(2 n - 1) in which the working potential may be chosen when the original 
quantum system is governed by an n-term potential. 
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